skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Shiyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurately reconstructing 3D hand poses is a pivotal element for numerous Human-Computer Interaction applications. In this work, we propose SonicHand, the first smartphone-based 3D hand pose reconstruction system using purely inaudible acoustic signals. SonicHand incorporates signal processing techniques and a deep learning framework to address a series of challenges. First, it encodes the topological information of the hand skeleton as prior knowledge and utilizes a deep learning model to realistically and smoothly reconstruct the hand poses. Second, the system employs adversarial training to enhance the generalization ability of our system to be deployed in a new environment or for a new user. Third, we adopt a hand tracking method based on channel impulse response estimation. It enables our system to handle the scenario where the hand performs gestures while moving arbitrarily as a whole. We conduct extensive experiments on a smartphone testbed to demonstrate the effectiveness and robustness of our system from various dimensions. The experiments involve 10 subjects performing up to 12 different hand gestures in three distinctive environments. When the phone is held in one of the user’s hands, the proposed system can track joints with an average error of 18.64 mm. 
    more » « less
  2. null (Ed.)
    Recently, significant efforts are made to explore device-free human activity recognition techniques that utilize the information collected by existing indoor wireless infrastructures without the need for the monitored subject to carry a dedicated device. Most of the existing work, however, focuses their attention on the analysis of the signal received by a single device. In practice, there are usually multiple devices "observing" the same subject. Each of these devices can be regarded as an information source and provides us an unique "view" of the observed subject. Intuitively, if we can combine the complementary information carried by the multiple views, we will be able to improve the activity recognition accuracy. Towards this end, we propose DeepMV, a unified multi-view deep learning framework, to learn informative representations of heterogeneous device-free data. DeepMV can combine different views' information weighted by the quality of their data and extract commonness shared across different environments to improve the recognition performance. To evaluate the proposed DeepMV model, we set up a testbed using commercialized WiFi and acoustic devices. Experiment results show that DeepMV can effectively recognize activities and outperform the state-of-the-art human activity recognition methods. 
    more » « less
  3. null (Ed.)